
Reward-guided Curriculum for
Learning Robust Action Policies

Mysore, Siddharth 1 Platt, Robert 2 Saenko, Kate 1

Abstract
We propose a novel method to develop robust
action policies using an automated curriculum
which seeks to improve task generalization and re-
duce policy brittleness by self-reflectively choos-
ing what to train on in order to maximize rewards
over a task domain. Our Reward-guided Curricu-
lum (RgC) is a single-policy meta-learning ap-
proach which is designed to augment the training
of existing architectures. Experiments on multiple
video games and classical controls tasks indicate
notable improvements in task generalization and
robustness of the policies trained with RgC.

1. Introduction
Deep Reinforcement Learning (RL) techniques have demon-
strated laudable performance across a wide array of tasks in
games, controls, and more. However, the brittleness and ca-
pacity of generalization of trained RL policies remain open
problems (Nichol et al., 2018; Leike et al., 2017; Cobbe
et al., 2018; Packer et al., 2018; Zhang et al., 2018a;b).
These problems are especially important to address in prac-
tical applications where one might expect varying degrees
of distribution shift at test time, where RL agents may en-
counter states never experienced during training. Previous
works addressing the sensitivity and generalizability of RL
policies (Finn et al., 2017; Peng et al., 2018; Gupta et al.,
2018; Stadie et al., 2018; Rusu et al., 2016; Yu et al., 2017;
Tobin et al., 2017; Sadeghi et al., 2017; Rajeswaran et al.,
2017) typically sample from a uniform or normal distribu-
tion over tasks. In this work we ask: Is this naive sampling
over task variation the best we can do?

In an effort to more intelligently utilize experience gained

1Department of Computer Science, Boston University, Boston,
MA, U.S.A 2Khoury College of Computer Science, Northeastern
University, Boston, MA, U.S.A. Correspondence to: Siddharth
Mysore <sidmys@bu.edu>.

Proceedings of the Workshop on Multi-Task and Lifelong Reinforce-
ment Learning at the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

on a training set and improve robustness and generalization,
we develop an approach called Reward-guided Stochastic
Curriculum (RgC). RgC automatically constructs a training
curriculum for each learner to best motivate the learning of
robust action policies. We accomplish this by formulating
the training curriculum as a multi-armed bandit problem,
which seeks to maximize episodic rewards over the training
set, with the bandits guiding sampling probabilities over
task distributions. Experiments over multiple tasks show
that our method helps agents learn more robust policies,
which generalize better and are less brittle to distributional
shifts in the task domain.

2. Reward-guided Stochastic Curriculum
2.1. Preliminaries

A key hypothesis driving the development of the framework
for RgC was that not all experiences carry equal significance
in training. When a person attempts to learn a new skill,
they may not remember every aspect of the learning process,
but rather focus on the moments that offered critical insight
that allows them to advance their understanding of the skill.
We attempt to extend a similar intuition to learning in RL,
so that the learning algorithms can automatically identify
and prioritize experiences which offer the most value gain.

A number of meta-learning techniques recognize the in-
equality in the importance of different experiences during
training and attempt to more intelligently utilize past expe-
rience and knowledge of past tasks when updating policies
during training (Andrychowicz et al., 2017; Rajeswaran
et al., 2017; Schaul et al., 2016; Finn et al., 2017). However,
these methods typically limit their considerations to either
past experiences or future task choices. Curriculum learning
has also been demonstrated as a powerful strategy in im-
proving learning performance over multiple tasks (Bengio
et al., 2009; Oh et al., 2017; Andreas et al., 2016), however
curricula are often partially or completely hand crafted.

We propose RgC as a way to holistically consider both the
past and future impact of choosing to train on any particular
instantiation of a task, relative to the available training set,
in order to actively inform how tasks are sampled from the
training distribution.

Reward-guided Curriculum for Learning Robust Action Policies

2.2. Method

RgC draws inspiration from Graves et al. (2017), who tackle
the problem of multi-task Natural Language Processing with
automated curricula. Like them, we formulate the problem
of developing an automated curriculum for a given RL task
as a multi-armed bandit problem. The goal of the bandit
is to maximize the payoff of every choice it makes, where
the bandit’s choices correspond to determining how tasks
should be sampled from the task distribution. This would be
trivial if the values of each arm are known; however, when
choice-values are not known, it is necessary to estimate the
value by exploring the task domain.

We define a curriculum as a sampling policy over the task
distribution. A basic curriculum over N possible task set-
tings can be constructed as an N -armed bandit, with the
syllabus of the developed curriculum intended to maximize
the reward that the RL agent achieves over the entire task
distribution. Over T rounds of ‘play’, the bandit/curriculum
makes a choice, at ∈ {1, . . . , N}, corresponding to a de-
cision to train under a specific task setting, and observes a
payoff rt, computed as the difference in mean rewards ob-
served before and after training on the selected task setting.
The goal of the curriculum is to consistently sample rollouts
from the task distribution to maximize learning gains.

To choose settings on which to train in order to mini-
mize regret and maximize overall reward, we employ the
Exponentially-weighted algorithm for Exploration and Ex-
ploitation (Exp3) (Auer et al., 2003). Specifically, we use
the Exp3.S variant of the algorithm to develop our multi-
armed bandit’s policy, which employs an ε-greedy strategy
and additively mixes weights to ensure that the probabilities
of selecting any particular action are not driven to insignifi-
cance. We define ε to limit the maximum probability of any
setting being selected. (Note: we present Exp3.S similarly
to Graves et al. (2017), which is mathematically equivalent
to the algorithm as it is presented in Auer et al. (2003)).

A key difference in our method from that employed by
Graves et al. (2017) is in how we define the payoff, or the
value gained by training on a specific task setting. Graves
et al. (2017) perform a comparison on the training loss
before and after training, utilizing the same loss metric that
is employed by the network. We instead compute our payoff
based on the difference in mean episodic rewards over the
task distribution before and after training. We further extend
the method to attach a different bandit to each different task
variable in the training distribution (for example, if mass
and volume were variables, we would use two bandits -
one for mass and one for volume, and each bandit would
select different masses or volumes to train on respectively).
This multi-multi-armed bandit structure allows for a linear
growth of the number of arms to be maintained with the
number of variants per variable, as opposed to polynomial.

A bandit m ∈ M (where M is a set of task variables)
has a policy defined by weights, wm,i ∀i ∈ {1, . . . , Nm},
corresponding to the Nm possible task-variable settings.
At bandit-step t the bandit chooses setting am,t ∼ πExp3.S

m,t ,
where πExp3.S

m,t (im) is the sampling probability of setting im:

πExp3.S
m,t (i) := (1− ε) ewm,i,t∑

j e
wm,j,t

+
ε

Nm
(1)

At the end of each bandit step, the weights are updated based
on observed payoff, rt:

wm,t+1,i := log

(1− αt)ηi + αt
Nm − 1

∑
j 6=i

ηj


where ηk = e(wm,t,k+r̂

β
M,t−1,kR)

(2)

where wm,1 = 0, αt := t−1, and the importance sampled
payoff is computed as:

r̂βM,t,i :=
rt
∏
m∈M I[am,t=im] + β∏
m∈M πExp3.S

m,t (im)
(3)

To bound the magnitude by which an arm’s weight might
change at any given step, payoffs, rt, per bandit step, t are
scaled such that rt ∈ [−1, 1]:

rt :=


−1 δRt < µ20

t

1 δRt > µ80
t

2(δRt−µ20
t)

µ80
t −µ20

t
− 1 otherwise

(4)

where δRt = Rt −Rt−1 is the true bandit policy payoff at
step t, computed based on mean rewards achieved by the
agent on the set of environment setting of interest, and µx

represents the xth percentile of payoffs achieved: {rs≤t}.
The complete RgC algorithm can be found in Appendix A.

As its name suggests, the Reward-guided Curriculum is not
a RL algorithm in itself, but is rather a meta-learning scheme
that is built to automatically guide how RL agents explore
the training domain in an effort to improve generalization
over the task distribution. As discussed in Section 2.1, it is
built on the hypothesis that following a training curriculum
which allows the agent to acquire more ’useful’ experience
would result in more robust performance. The practical
realization of this is three-fold:

i Agents always consider the impact of experience
gained in the context of how they affect the average
achievable rewards over the entire task distribution,
which we believe encourages a stronger focus on be-
ing generally competent, as opposed to capitalizing on
instances of high rewards, which may be gained by
specializing on individual task settings.

ii By contextualizing past experiences and periodically
updating the sampling strategy over the training distri-
bution, RgC constantly pushes the RL agent to explore

Reward-guided Curriculum for Learning Robust Action Policies

Figure 1. Comparison between RgC (blue) and baseline Rainbow (red) of rewards achieved on Sonic the Hedgehog 1 (a) and Sonic the
Hedgehog 2 (b). While the test performances for both games are lower than on training levels, RgC performs consistently better than the
baseline joint-Rainbow, suggesting that RgC aids the development of better in-domain generalization.

the task-domain in a way that maximizes expected
value gain.

iii By always prioritizing the gaining of experiences
which contribute to improved generalized performance,
RgC also contributes to replay buffers being filled with
more potentially valuable state transitions.

3. Evaluation
In order to investigate the broader utility of RgC, we in-
vestigate the performance impacts of our algorithm on two
classes of tasks: (i) playing video games, and (ii) classical
controls. Video games offer multiple aesthetically and me-
chanically similar levels, and the level-based structure of
games allows us to create distinct training and test sets on
which we can test the generalizability of RL agent policies.
Controls tasks on the other hand, which model physical
interactions, require agents to be robust to variations and
inaccuracies in modeling, providing a good test bed for
studying policy brittleness.

3.1. Sonic Genesis Games

The Sonic the Hedgehog games were featured as a part of
the OpenAI Gym-retro generalizability challenge (Nichol
et al., 2018). However, because the contest did not make
their 3-game training environment publicly available, we
consider generalizability across only 2 of the Sonic games
individually, with sets of training and held-out test levels for
each game. We otherwise use the same game interfaces, re-
ward engineering and hyperparameters. We train our agents
using the Rainbow (Hessel et al., 2017) architecture, which
is one of the baselines provided by Nichol et al. (2018). We

specifically use the joint-Rainbow baseline, which trains
agents by randomly re-sampling the task setting on every
new episode (this is similar to domain randomization (Tobin
et al., 2017; Nichol et al., 2018)), and compare it against
vanilla Rainbow guided by RgC. Here, RgC selects when to
train on which levels to maximize rewards over all the train-
ing levels (further implementation details in Appendix B.1).

Analyzing the training progress of either game does not pro-
vide any immediate indication of a meaningful improvement
in performance with RgC, with observed training rewards
being of similar magnitude to joint rainbow, but present-
ing with higher variance (see Appendix B.2). However,
when considering the performance on held-out test levels,
as shown in Figure 1, it can be noted that the agents trained
with RgC perform better on average than those trained with
joint Rainbow. It can also be noted that agents trained with
RgC tend to perform better over the levels in the training set
with worst-case performance not being significantly worse
than that of joint Rainbow. In the case of Sonic the Hedge-
hog 2, we note from Figure 1(b) that the RgC agents appear
to significantly outperform the baseline joint-Rainbow, yet
this is not reflected in the training reward. We suspect
that this is because, during training, the RgC agents focus
on levels which promote a general improvement in perfor-
mance over the training set of levels. The Emerald Hill
Zone Act1 and Aquatic Ruins Zone Act1 levels, where the
agents already achieved high rewards and did not choose
to focus their attention, were rarely sampled and thus their
high rewards had little impact on the training reward signals
observed by the underlying Rainbow algorithm.

Reward-guided Curriculum for Learning Robust Action Policies

3.2. Simple Continuous Controls

We also evaluated RgC on a series of classical continuous
controls tasks - (i) pendulum balancing, (ii) balancing a cart-
pole system, and (iii) 2D-manipulation of a ball on a plane.
Tasks (i) and (ii) are derived from OpenAI Gym (Brockman
et al., 2016), while (iii) is a custom environment built using
the Unity game engine. In all three of these tasks, we
sought to investigate the efficacy of agents trained with
RgC on tasks involving changing physics and continuous
control, where we had previously observed evidence of
policy brittleness (details in Appendix D). The pendulum
and ball-pushing tasks see the mass of the pendulum and
ball varied respectively, and the cart-pole has variable cart
and pole masses.

Our results are compared against: (i) The best results ob-
served via a grid search (oracle) on policies trained exclu-
sively on specific individual task settings (see Appendix D),
and (ii) Policies trained under a joint/mixed training struc-
ture (joint) as with the sonic games in Section 3.1. All agents
are trained using the Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2016) architecture. When training
with RgC, our curriculum chooses physics settings under
which to train the agent. Further implementation details on
architecture and task set-up are provided in Appendix C.

Tables 1, 2 and 3 demonstrate that our method outperforms
policies built on joint sampling, and achieves a performance
more comparable to our oracle, with the Pendulum and Cart-
Pole getting within 1% and 4% of their oracles’ success rates
respectively (noting that the Pendulum’s oracle achieved a
100% success rate). In the case of the ball-pushing task,
where we did not have a binary definition of success, it
can be noted that the average error is improved over joint
sampling, being within 2× of the oracle’s error, as opposed
to 3×. Our method also has a significantly lower compu-
tational cost than the oracle, needing to train only a single
policy as opposed to

∏
m∈M Nm policies.

Table 1. Pendulum policy success rate (higher is better, darker is
worse) averaged over 15 agents, with 6 tests per mass per agent.

Test Mass Policy
Oracle Joint (baseline) RgC (ours)

1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 1.00 0.85 1.00
7 1.00 0.77 1.00
8 1.00 0.69 1.00
9 1.00 0.69 1.00
10 1.00 0.46 0.93

Avg 1.00 0.85 0.99

Table 2. Cart-pole policy success rate (higher is better, darker is
worse) averaged over 14 agents, with 15 random initializations per
test case.

Cart Mass Pole Mass Policy
Oracle Joint RgC (ours)

1.0 0.10 1.00 0.83 1.00
0.25 0.83 0.83 1.00
0.50 1.00 0.83 1.00
1.00 0.83 0.83 0.93

3.0 0.10 0.83 1.00 0.86
0.25 0.83 1.00 0.79
0.50 0.83 0.83 0.79
1.00 0.83 0.67 0.86

5.0 0.10 0.83 0.33 0.57
0.25 0.83 0.33 0.64
0.50 0.83 0.17 0.64
1.00 0.67 0.17 0.64

Avg 0.85 0.65 0.81

Table 3. Ball pushing policy error rate comparisons (lower is better,
darker is worse) averaged over 15 agents and 50 initializtions per
test

Test Mass Policy
Oracle Joint RgC (ours)

2 0.21 0.55 0.44
4 0.21 0.64 0.44
6 0.22 0.68 0.45
8 0.22 0.68 0.45
10 0.22 0.69 0.45

Avg 0.22 0.65 0.45

4. Conclusion
We proposed RgC, a meta-learning technique learning using
automatic stochastic curricula, guided by reward signals on
a task distribution, to get the most out of an agent’s train-
ing environment and develop action policies robust to task
perturbation. The curricula developed adapt to the experi-
ences of each learner, allowing for a notion of self-reflection
and self-correction. We demonstrate that RgC is capable
of improving generalization to unseen test levels in two
different games, and allows for reduced policy brittleness
when faced with physical variations in a series of classical
controls tasks.

We do however recognize a few key limitations of our
method. Principally, future work would seek to improve the
statistical significance of the results presented in Section 3.1
by analyzing performances of more than just 5 agents. Fur-
thermore, the current assumption that environment can be
discretized in the manner presented may not hold in general
and we are currently investigating techniques which could
extend the principles of RgC to continuous variation in task
parametrization.

Reward-guided Curriculum for Learning Robust Action Policies

Acknowledgements
This work was funded by NSF S&AS and DARPA.

References
Andreas, J., Klein, D., and Levine, S. Modular multi-

task reinforcement learning with policy sketches. CoRR,
abs/1611.01796, 2016.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 30, pp. 5048–
5058. Curran Associates, Inc., 2017.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM J.
Comput., 32(1):48–77, January 2003. ISSN 0097-5397.
doi: 10.1137/S0097539701398375.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Bottou, L. and Littman, M. (eds.),
Proceedings of the Twenty-sixth International Conference
on Machine Learning (ICML’09). ACM, 2009.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
CoRR, abs/1606.01540, 2016.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learning.
CoRR, abs/1812.02341, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Precup,
D. and Teh, Y. W. (eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1126–
1135, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. Automated curriculum learning for
neural networks. CoRR, abs/1704.03003, 2017.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsuper-
vised meta-learning for reinforcement learning. CoRR,
abs/1806.04640, 2018.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. Association for the Advance-
ment of Artificial Intelligence Conference on Artificial
Intelligence, 2017.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,
T., Lefrancq, A., Orseau, L., and Legg, S. Ai safety
gridworlds. CoRR, abs/1711.09883, 2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. International
Conference on Learning Representations, 2016.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman,
J. Gotta learn fast: A new benchmark for generalization
in RL. CoRR, abs/1804.03720, 2018.

Oh, J., Singh, S. P., Lee, H., and Kohli, P. Zero-shot task gen-
eralization with multi-task deep reinforcement learning.
In ICML, 2017.

Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., and
Song, D. X. Assessing generalization in deep reinforce-
ment learning. CoRR, abs/1810.12282, 2018.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne,
M. Deepmimic: Example-guided deep reinforcement
learning of physics-based character skills. ACM Trans.
Graph., 37(4):143:1–143:14, July 2018. ISSN 0730-0301.
doi: 10.1145/3197517.3201311.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S.
Epopt: Learning robust neural network policies using
model ensembles. International Conference on Learning
Representations, 2017.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. Progressive neural networks. CoRR,
abs/1606.04671, 2016.

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. Sim2real
view invariant visual servoing by recurrent control. CoRR,
abs/1712.07642, 2017.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prior-
itized experience replay. International Conference on
Learning Representations, 2016.

Stadie, B. C., Yang, G., Houthooft, R., Chen, P., Duan,
Y., Wu, Y., Abbeel, P., and Sutskever, I. The impor-
tance of sampling in meta-reinforcement learning. In
Bengio, S., Wallach, H. M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,
pp. 9300–9310, 2018.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.

Reward-guided Curriculum for Learning Robust Action Policies

IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 23–30, 09 2017. doi: 10.1109/IROS.
2017.8202133.

Yu, W., Liu, C. K., and Turk, G. Preparing for the un-
known: Learning a universal policy with online system
identification. Robotics: Science and Systems, 2017.

Zhang, A. X., Ballas, N., and Pineau, J. A dissection of
overfitting and generalization in continuous reinforce-
ment learning. CoRR, abs/1806.07937, 2018a.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A study
on overfitting in deep reinforcement learning. CoRR,
abs/1804.06893, 2018b.

A. Reward-guided Curriculum Algorithm

Algorithm 1 Reward-guided Curriculum
Initialize: wm,i = 0 ∀ i ∈ Nm ∀m ∈M
for t = 1 . . . T do

Sample |M | task-variable values am,t ∼ πExp3.S
m,t ∀m ∈

M
Sample K task initializations uniformly from a valid
space of initializations
for k ∈ K do

Compute Initial Reward of actor-network policy pθ
on initialization k: Rprek

end for
Train network pθ on k ∈ K
for k ∈ K do

Compute Post-training Reward of network pθ on
initialization k: Rpostk

end for
Compute learning progress δRt := mean({Rpostk −
Rprek } ∀ k ∈ K)
Map δRt to [−1, 1] by (4)
Update weights wm,i by (2)

end for

B. Sonic Genesis Games – Implementation
B.1. Technical details

The hyperparameters for the Rainbow agent for the Sonic the
Hedgehog games, both Sonic 1 and 2, was based on the retro-
baselines released by OpenAI and found at https://
github.com/openai/retro-baselines, supple-
mented by the Rainbow implementation provided by anyrl-
py found at https://github.com/unixpickle/
anyrl-py.

Modifications had to me be made to the sonic-util and dqn
codes from retro-baselines and anyrl-py/algos respectively

to accommodate RgC and additional logging. The latter was
a superficial change which did not impact training. Current
development codes can be made available upon request.

We use the following split of training ant test levels for Sonic
the hedgehog:

Training levels: {’SpringYardZone.Act3’,
’SpringYardZone.Act2’, ’GreenHillZone.Act3’,
’GreenHillZone.Act1’, ’StarLightZone.Act2’,
’StarLightZone.Act1’, ’MarbleZone.Act2’,
’MarbleZone.Act1’, ’MarbleZone.Act3’,
’ScrapBrainZone.Act2’, ’LabyrinthZone.Act1’,
’LabyrinthZone.Act3’}

Test levels: {’SpringYardZone.Act1’,
’GreenHillZone.Act2’, ’StarLightZone.Act3’,
’ScrapBrainZone.Act1’, ’LabyrinthZone.Act2’}

We use the following split of training ant test levels for Sonic
the hedgehog 2:

Training levels: {’EmeraldHillZone.Act1’,
’EmeraldHillZone.Act2’, ’ChemicalPlantZone.Act2’,
’ChemicalPlantZone.Act1’, ’MetropolisZone.Act1’,
’MetropolisZone.Act2’, ’OilOceanZone.Act1’,
’MysticCaveZone.Act1’, ’HillTopZone.Act1’,
’CasinoNightZone.Act1’, ’WingFortressZone’,
’AquaticRuinZone.Act2’, ’AquaticRuinZone.Act1’}

Test levels: {’MetropolisZone.Act3’, ’HillTopZone.Act2’,
’OilOceanZone.Act2’, ’MysticCaveZone.Act2’}

Each training run uses a different random seed and training
was conducted on a PC running Windows 10, with an Intel
i7 6850k and Nvidia GTX 1080ti.

For consistency and fairness to all agents, each agent was
allowed to train for exactly 2 × 106 steps. The RgC cur-
riculum was designed to perform 1 curriculum step per 10
episodes and instantiated with ε and β values of 0.05

B.2. Training performance

Figure 2. Training progress on Sonic the Hedgehog 1 averaged
over 5 agents with variance shown in shaded region

https://github.com/openai/retro-baselines
https://github.com/openai/retro-baselines
https://github.com/unixpickle/anyrl-py
https://github.com/unixpickle/anyrl-py

Reward-guided Curriculum for Learning Robust Action Policies

Figure 3. Training progress on Sonic the Hedgehog 2 averaged
over 5 agents with variance shown in shaded region – Each agent
was allowed to complete 2× 106 steps in training

Figure 4. Sample heat-maps to visualize how the sampling proba-
bilities over the training distribution evolves during the course of
training two independent agents with RgC for Sonic the Hedgehog
1 - train/test split 1. Observe that despite starting with a uniform
sampling distribution, the meta-learner eventually begins to focus
on specific levels and constantly adjusts its sampling per the needs
of the agent being trained. Furthermore, the sampling strategies
are different between the two learners, despite operating on the
same task distribution, indicating that the meta-learner adapts the
the needs of individual learners

C. Classical Control Tasks
C.1. Training Environments

We primarily use 3 training environments in all our experi-
ments:

1. Pendulum-v0 from OpenAI Gym (Brockman et al.,
2016), modified minimally to allow for programmatic
control of the pendulum’s mass. State space: sinθ,
cos θ, θ̇, Action space: Torque. Sample environment
shown in Figure 5
Defining success: Having a maximum deviation of
less than 15 degrees from the vertical balancing point
over the last 100 steps of a 300-step episode.

2. CartPole-v1 from OpenAI Gym, modified to allow
programmatic control of the pole and cart masses, as

well as to be treated as a continuous control task, as
opposed to one with discrete actions. State space: x, ẋ
(of cart), θ, θ̇ of pole. Action Space: Force
Defining success: Holding the pole steady (dropping
less than 10 degrees) for at least 490 of the 500 total
steps of an episode.

3. Custom Unity Ball-pushing task. State space: xg, yg
position of goal, xb, yb position of ball, ẋb, ẏb velocity
of ball.
Defining error: Distance of the ball from the goal at
the time of episode completion.

Figure 5. Sample renders from Gym Pendulum-v0 (Left) Random
Initialization, (Right) Successful Completion

Figure 6. Sample render from Gym CartPole-v1 Success is deter-
mined by maintaining the pole steady

Figure 7. Sample renders from Unity Ball-pushing (Left) Random
Initialization, (Right) Successful Completion

Reward-guided Curriculum for Learning Robust Action Policies

Table 4. OpenAI-Gym Pendulum policy success rate (higher is better, darker is worse). We evaluate multiple policies trained and tested on
different OpenAI-Gym Pendulum-v0 environment settings. Rows represent performance for policies trained on a specific mass, columns
correspond to specific test masses. Success rate is computed as the fraction of 8 trials with an average maximum deviation of less than 15
degrees, over 6 tests per test mass per trial, from the vertical steady point over the last 100 steps of a 300-step episode.

TRAIN\TEST 1 2 3 4 5 6 7 8 9 10 AVG
2 0.75 0.63 0.50 0.25 0.38 0.38 0.38 0.25 0.13 0.13 0.38
4 0.75 0.88 0.75 0.75 0.75 0.63 0.50 0.38 0.38 0.13 0.59
6 0.88 1.00 1.00 1.00 1.00 0.88 0.88 0.75 0.38 0.25 0.80
8 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5. Cart-pole success rate for policies trained on individual environment settings (higher is better). Note that the column and row
headings contain the trained/tested pole and cart masses respectively within brackets

Train/Test (0.1,1) (0.1,3) (0.1,5) (0.25,1) (0.25,3) (0.25,5) (0.5,1) (0.5,3) (0.5,5) (1,1) (1,3) (1,5) AVG
(0.1,1) 1.00 0.00 0.00 0.83 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.21
(0.1,3) 0.20 0.20 0.00 0.20 0.60 0.00 0.20 0.40 0.00 0.20 0.20 0.00 0.18
(0.1,5) 1.00 1.00 1.00 1.00 1.00 0.83 0.67 0.67 0.67 1.00 0.50 0.50 0.82
(0.25,1) 0.83 0.00 0.00 0.83 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.19
(0.25,3) 0.80 0.80 0.00 0.80 0.80 0.00 0.80 0.60 0.00 0.80 0.20 0.00 0.47
(0.25,5) 1.00 0.75 1.00 1.00 0.75 1.00 1.00 0.75 0.50 0.75 0.75 0.50 0.81
(0.5,1) 1.00 0.00 0.00 1.00 0.00 0.00 0.83 0.00 0.00 0.17 0.00 0.00 0.25
(0.5,3) 0.67 0.83 0.33 0.67 0.83 0.33 0.67 0.83 0.17 0.67 0.50 0.17 0.56
(0.5,5) 1.00 0.83 0.83 1.00 0.67 0.67 1.00 0.83 0.83 1.00 0.83 0.50 0.83
(1,1) 0.80 0.00 0.00 0.80 0.00 0.00 0.80 0.00 0.00 0.60 0.00 0.00 0.25
(1,3) 0.83 0.83 0.17 0.83 0.83 0.17 0.83 0.83 0.17 0.83 0.67 0.17 0.60
(1,5) 1.00 0.83 0.83 0.83 0.83 0.83 1.00 0.83 0.83 0.83 0.83 0.67 0.85

C.2. Experimental Details

DDPG network configuration:

• Hidden layer configuration: (400,300)
• Additional notes: Code adapted from Patrick

Emami’s code which is available on Github. Modi-
fications were made to remove the use of tflearn and
use only TensorFlow.

Reward-Guided stochastic curriculum parameters:

• ε: 0.05 for pendulum and ball-pushing, 0.2 for cart-
pole

• β: 0.05 for pendulum and ball-pushing, 0.2 for cart-
pole

D. Exploring Policy Brittleness in Continuous
Control

When training RL policies on the control tasks described in
Appendix C, we noted that there was a significant disparity
in the performances of trained policies when exposed to dif-
ferent physics settings. For the pendulum task, we observed
that policies trained on a heavy pendulum would often gener-
alize well to lighter-weight pendulums, but policies trained
on light-weight pendulums would simply fail to work on
heavier pendulums, despite having access to and even hitting
the same maximum torque. This disparity in performance
is captured in Table 4. We observed a similar phenomenon
with the Cart-pole environment too (Table 5), where high-
mass carts and poles tended to motivate the learning of more

robust policies. On the ball-pushing task however, we noted
that it was in fact training to manipulate the lightest ball that
yielded the best performance (Table 6). This indicated that
the problem of brittle policies could not be addressed by
just naively training on high-inertia environments.

Table 6. Unity Ball-pushing median policy error (lower is better).
Performance evaluation of multiple policies trained and tested on
different custom Unity ball-pushing environment settings. Rows
represent performance for policies trained on a specific ball mass,
columns correspond to specific test masses. Errors are computed as
the median Euclidean distance of the ball from the goal evaluated
on 6 separate trials, with 50 pre-defined tests per trial (to ensure
fair comparison between policies).

Train\Test 2 4 6 8 10 Avg
2 0.21 0.21 0.22 0.22 0.22 0.22
4 0.40 0.23 0.25 0.25 0.25 0.28
6 0.66 0.37 0.36 0.36 0.37 0.43
8 1.25 0.66 0.63 0.63 0.64 0.76

10 1.15 0.54 0.46 0.45 0.46 0.61

https://github.com/pemami4911/deep-rl/blob/master/ddpg/ddpg.py
https://github.com/pemami4911/deep-rl/blob/master/ddpg/ddpg.py

